
PART -A IMPORTANT QUESTIONS

1) Give the conventional representation of a cylindrical helical tension spring, cylindrical helical compression spring, semi-elliptic leaf spring, internal threading, external threading, spur gear, bearings and diamond knurling.

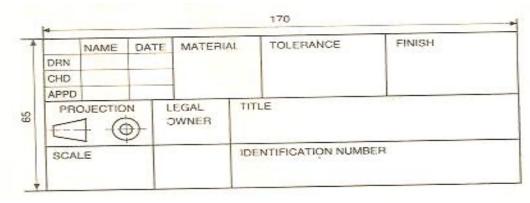
- 2) What are the different standard sizes of drawing sheets? Give their designations and sizes.
- There are five standard sizes for drawing sheets, specified by Bureau of Indian Standards (BIS) SP: 46-1988, as given below.
- Drawing sheets may be used with their longer sides positioned horizontally.

Designation	Dimensions (mm)	
A0	841 X 1189	
A1	594 X 841	
A2	420 X 594	
A3	297 X 420	
A4	210 X 297	

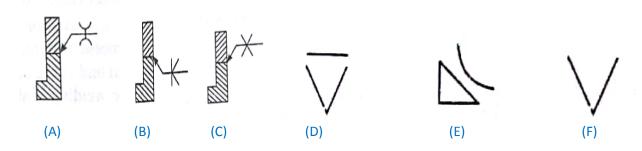
3) What are the Elements of production drawing?

- Following are the basic elements of a production drawing.
- Format of drawing sheet,
- Size and shape of the component,
- Projection method,
- Material specification and shape such as castings, forgings, plates, rounds, etc.,
- Indication of surface roughness and other heat treatments, if any,
- Limits, fits and tolerances of size, form, and position,
- Production method,
- Process sheet,
- Specification of standard components,
- Conventions used to represent certain machine components,
- Inspection and testing methods.

4) What do you mean by production Drawing?


production Drawing

A component or part drawing is termed as a production drawing. It is an authorized document to produce the component in the shop floor.


5) Draw and describe about industrial oriented title block?

A production drawing may include the following additional information, located either in the drawing sheet or in the title block:

- 1. Job order number,
- 2. Surface treatment, roughness, etc.,
- 3. Key to machining and other symbols,
- 4. A general note on tolerance on dimensions, not individually tolerance.
- 5. Reference to tools, gauges, jigs and fixtures,
- 6. Parts list, and
- 7. Alternations and revisions.

6) Write down the meaning of the weld symbols as shown in below.

- (A) Double U butt weld
- (B) Double bevel butt weld (K weld)
- (C) Double V butt weld (X weld)

D)Flat- Single V-butt weld

E)concave fillet weld

F)Single V-butt weld

7) Draw the symbol for fixed displacement hydraulic pump Bi-directional

8) Define interchangeability.

The term interchangeability refers to the parts which go into the assembly at random, from a lot. Eg:- A nut and a bolt of a particular size may be assembled by selecting at random from the lots. In this any nut should be able to get assembled with any bolt.

9) Define tolerance, types with examples allowance.

TOLERANCE:-

It is the difference between the maximum and minimum permissible limits of the given size.

Tolerance = upper limit - lower limit.

If the variation is provided on one side of the basic size it is termed as unilateral tolerance. Similarly, if the variation is provided on both sides of the basic size, it is known as bilateral tolerance.

ALLOWANCE:-

It is the internal difference between the hole and shaft dimensions after their assembly is called allowance.

10) What is fit and what are the various types of fits?

FIT:-It is the degree of looseness or tightness between two mating parts to perform a definite function.

TYPES OF FITS:-

There are three types of fits

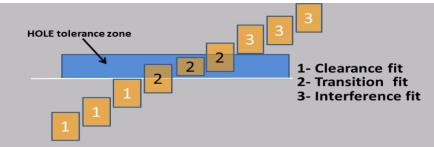
1)Clearance fit

2)Interference Fit

3)Transition Fit

11) what are the various types of fits?explain briefly?

1)Clearance fit


This fit arises when the diameter of shat is smaller than hole. The minimum diameter of hole is greater than the largest permissible diameter of the shaft. The value of clearance fit is always positive.

2)Interference Fit

In this type of fit the minimum permissible diameter of the shaft is larger than the maximum allowable diameter of the hole. As the diameter of shaft is larger than the diameter of hole, the hole and shaft are intended to be attached permanently.

3)Transition Fit

This fit may result in either interference or a clearance, depending on the actual values of the tolerance of individual parts.

12) What is the difference between hole basis system and shaft basis system.

HOLE BASIS SYSTEM

In this system Hole is kept constant, Shaft size is varied to get different fits.

SHAFT BASIS SYSTEM

In this system Shaft is kept constant, Hole size is varied to get different fits.

- 13) Expand the following abbreviations
- a) HTS (HIGH TENSILE STEEL) b)CHD (CHECKED) c)CrS (CHROMIUM STEEL) d) TCS (TUNGSTEN CARBIDE STEEL) e)CRS (centres) f)CSK (COUNTER SUNK)
- g) BRG (BEARING)
- 14) For the following assemblies, with a basic size of 50mm calculate Hole tolerance , shaft tolerance, minimum and maximum allowance and type of fit.

a)H7/g6 b)H8/k6

for the following assemblies, with a basic size of somm calculate hole tolerance, shaft tolerance, minimum and maximum allowance and type of fil.

a) H7/96

b) H8/K6

Ed Gives Data:

Basic size = Somm.

a) H7 196

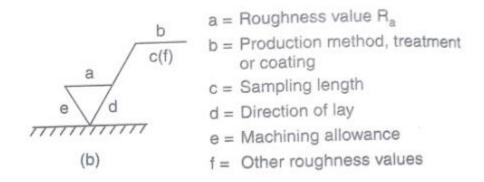
From tolerance tables at \$50mm the limits for shaft is 50^{-25} . and for hole the limits are 50^{+0} Hole $50^{+0} = 50$ Hole $50^{+0} = 50$

Shaft

- i) Hole tolerance = upper limit of hole Lower Limit of hole = 50.025 - 50.000 = 0.025 mm.
- ii) shaft tolerance = upper, limit of shaft Lower Limit of shaft = 49.991 49.975 = 0.016 mm.

- iii) minimum allowance = ipper total
 = Lower Limit of hole Upper, Limit of shoft
 = 50.000 49.991
 = 0.009 mm
- iv) maximum allowance = Upper Limit of hole-lower Limit of shaft
 = 50.025 49.975
 = 0.05 mm.
- Type of fit:
 From the above diagram it is clear that the given fit is clearance fit.
- b) H8/K6

From the tolerance tables the upper and lower, Limit form basic size somm at H8.8 KGare Hole $50^{+0} = 50^{\circ.000}$ shaft $50^{+2} = 50^{+0.002}$


- i) Hde tolerance = 50.039 50.000 = 0.039 mm
- ii) shaf tolerance = 50.018 50.002 = 0.016 mm
- iii) minimum allowance = 50.000 50.018 = -0.018 mm
- iv) maximum allowence = 50.039 50.002 = 0.037 mm
- v) type of fit:.

 From the figure (b) it is clear 50.008

 that the given fit is TRANSITION FIT. (b)

- 15) Find the limits of the following shafts and holes 20h6,60p7,20H6 and 75H11.
- 16) State the type of fit obtained for hole diameter 33.00mm & 33.24mm and shaft diameter 33.11mm & 34.05mm.

17) Draw the symbol for surface roughness and abbreviate a,b,c,d,e and f.

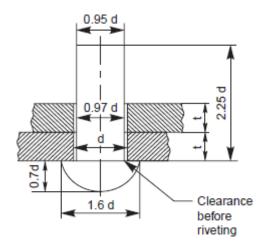
18) What is the meaning of below mentioned sybols.

- (A) Basic symbol used when the removal of material by machining process is needed.
- (B) Basic symbol used when the removal of material is not allowed.
 - 19) What are the surface finish values for Lapping, Honning, burnishing, Grinding, filing, turning and milling, Reaming, Hobbing, Drilling and sand casting in microns.

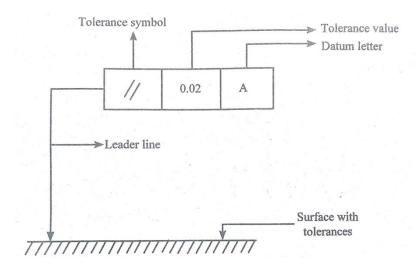
Lapping	-	0.012 to 0.1
Honning	-	0.025 to 0.4
Burnishing	-	0.04 to 0.8
Grinding	-	0.063 to 5
Filing	-	0.25 to 25
Turning and r	nilling -	0.32 to 25
Reaming	-	0.4 to 3.2
hobbing	-	0.4 to 3.2
Drilling	-	1.6 to 20
sand casting	-	5 to 50

20) Specify all the direction of lay and their meaning which are represented in surface roughness.

=	Parallel to the plane of projection of the view in which the symbol is used	Direction of lay
Т	Perpendicular to the plane of projection of the view in which the symbol is used	Direction of lay
Χ	Crossed in two slant directions relative to the plane of projection of the view in which the symbol is used	Direction of lay
M	Multi-directional	✓M Sissification Sissification
С	Approximately circular relative to the centre of the surface to which the symbol is applied	
R	Approximately radial relative to the centre of the surface to which the symbol is applied	VR → R

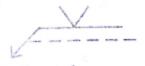

21) What are the symbols for the following Cylindricity, profile of any line, profile of any surface, parallelism, angularity, position, concentricity, symmetry.

Cylindricity	0
Profile of any line	
Profile of any surface	
Parallelism	//
Perpendicularity (squareness)	
Angularity	
Position	\oplus
Concentricity and coaxiality	
Symmetry	


22) Give the description for the following notes on a drawing.
THD RELIEF, Ø30 WIDE 4.
6 HOLES, EQUI-SP DIA 17 C BORE FOR M16 SOCKET HD CAP SCR.
DIA 25 DEEP 25
DIA 10 CSK DIA 15

NOTE	MEANING
THD RELIEF, Ø30 WIDE 4.	Cut a relief for thread with a diameter of 30mm and width 4mm
6 HOLES, EQUI-SP DIA 17 C BORE FOR M16 SOCKET HD CAP SCR.	Drill a through hole of dia 17 and counterbore to insert a socket headed cap screw of M16. Six holes are to be made equi-spaced on the circle.
DIA 25 DEEP 25	Drill a hole of diameter 25mm, to a depth of 25mm
DIA 10 CSK DIA 15	Drill a through hole of diameter 10mm and countersink to get 15mm on top.

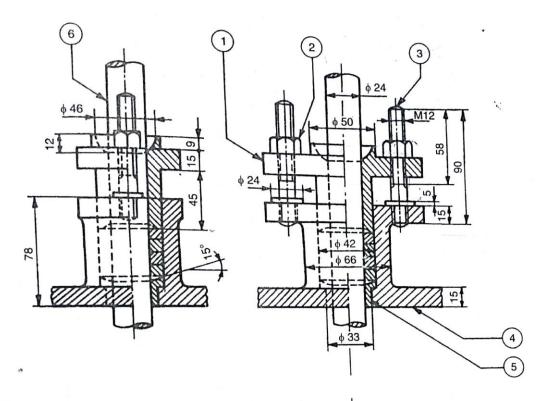
23) Mention the standard representation for rivet.


24) Explain all orientation symbols in geometric dimensioning tolerance with example.

25) Indicate the roughness symbols and roughness values for roughness N1,N2,N5 and N9.

Roughness grades	Roughness values (Ra) in microns	Roughness symbol
N1	0.025	
N2	0.05	
N5	0.4	
N9	6.3	
N10	12.5	$\overline{}$

26) Explain the position of the symbol with regard to the reference line


Single V – Butt weld at arrow side.

27) What is the difference between caulking and fullering.

Caulking	Fullering
It is used to obtain leak proof joints.	It is also used to obtain leak proof joints.
It is carried out by using a narrow blunt tool	It is carried out by using fullering tool.
called caulking tool.	
The thickness of the tool is about 5mm.	The thickness of the tool is equal to the thickness of the
	plates.
Surface finish obtained is less.	Surface finish obtained is more.
More risk of distortion of plates.	Less risk of distortion of the plates.
Caulking tool	Fullering tool

PART -B IMPORTANT QUESTIONS

- Q1). Study the given assembly drawing of the Stuffing Box as shown in below figure.
 - a) Draw the component drawings.
 - b) Apply suitable tolerances and fits.
 - c) Apply suitable geometrical tolerances to components.
 - d) Show the surface roughness symbols.
 - e) Prepare the process sheet for Gland.

Parts List

Part No.	rt No. Name Matl.		Qty.		
1	Gland	Brass	1		
2	Nut, M12	MS	2		
3	Stud	MS	2		
4	Body	CI	1		
5	Bush	Brass	1		
6	Shaft	MS	1		

Fig 9.12 Stuffing box

1ANS)

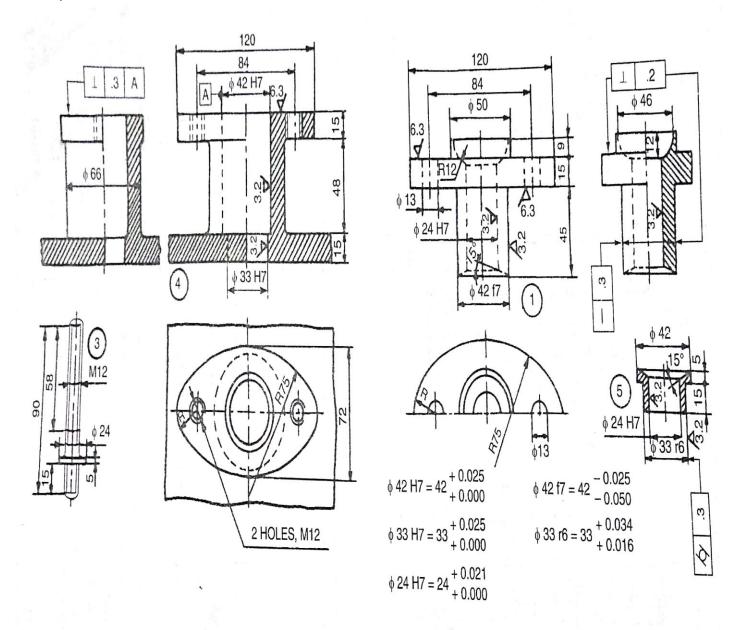
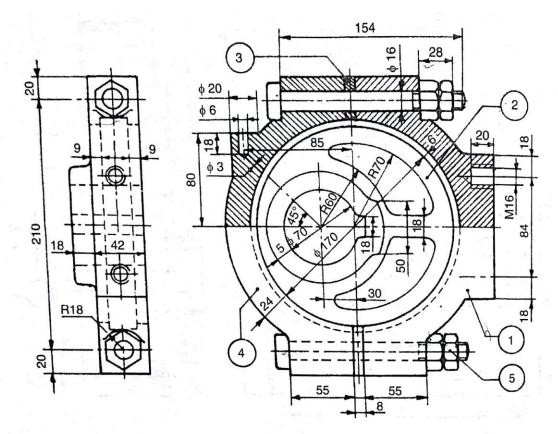
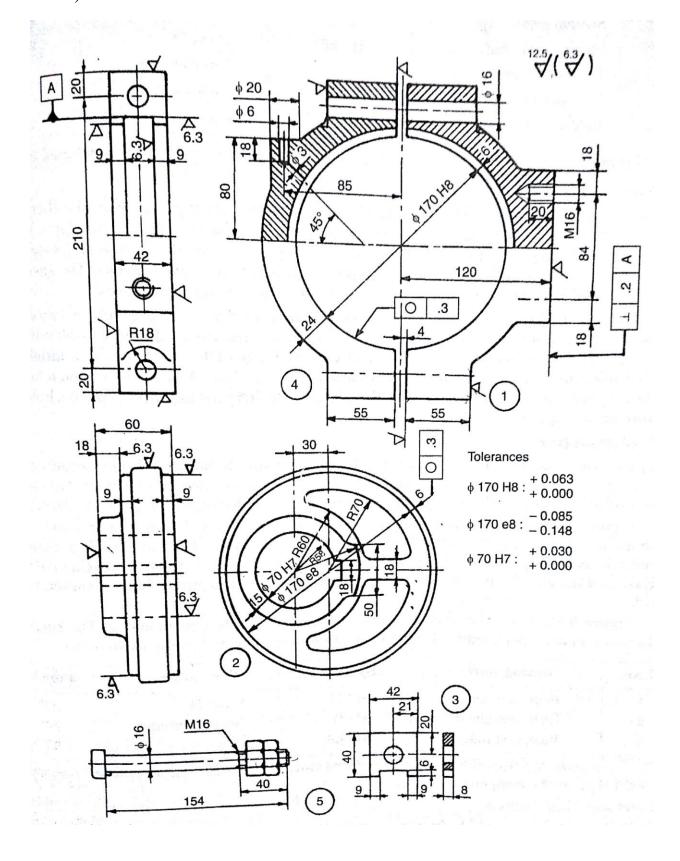



Fig. 9.13 Details of stuffing box


Sequence Machine		Operation	Tools or Gauges	Tools or Gauges Cycle Time		Remarks	
				Setup Time	Operation Time	6	
05		Check the dimensions of component	Vernier calipers	5.			
10	Lathe	Fix the component in chuck through portion $\phi 50 \times 9$ mm and perform facing on the end and oval section of gland.	Facing tool				
15	Lathe	Turn the component φ 42 × 45 mm	Turning tool				
20	Lathe	Drill φ 20 mm hole	Drill bit			E contract	
25	Lathe	Bore the hole upto \$24 mm	Boring tool		* 7		
30	Lathe	Chamfer the hole end	Turning tool	* 1			
35	Lathe	Reverse the component					
40	Lathe	Face the end and flange surface	Facing tool				
45	Lathe	Turn the component	Turning tool		58 5		
1.17		φ 50 mm			100		
50	Lathe	Bore R12	Boring tool	1 25			
55	Drilling	Drill two holes of φ 13 mm	Drill jig				
	machine	max a la l		100			
60	_	Inspect and verify the component size	Outside micrometer, vernier caliper, etc.				

- Q2). Study the given assembly drawing of the Eccentric as shown in below figure.
 - a) Draw the component drawings.
 - b) Apply suitable tolerances and fits.
 - c) Apply suitable geometrical tolerances to components.
 - d) Show the surface roughness symbols.
 - e) Prepare the process sheet for Straps.

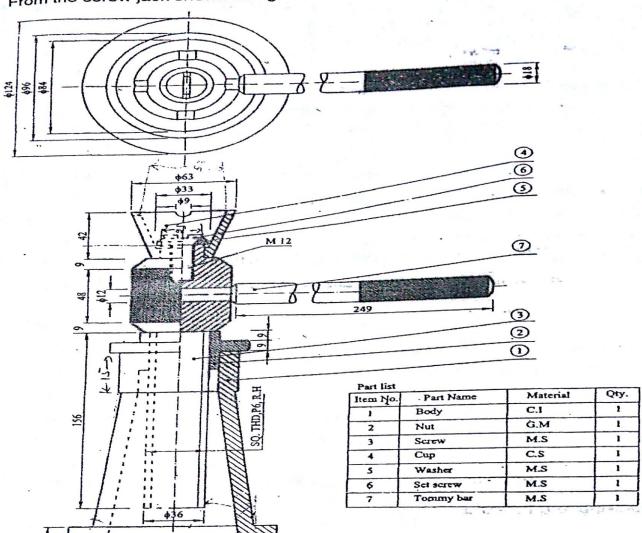
Parts List

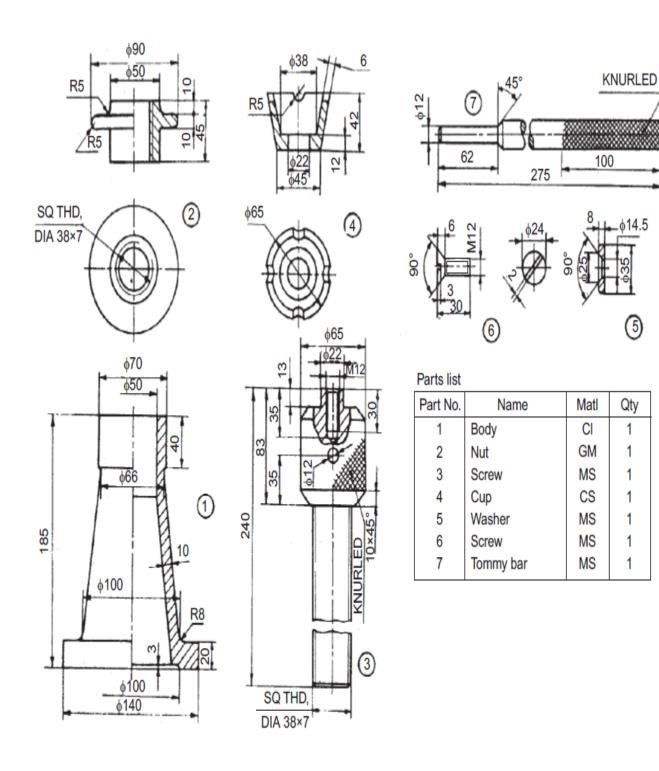
Part No.	Qty.	Name	Matl.
1	1	Strap	CI
2	1	Sheave	CI
3	2	Shim	Brass
4.	-1 1-ct	Strap .	CI
5	2	Bolt with nuts	MS

Part Name : Straps

Part Number: 1 and 4

Cycle Time :


Material


: Cast iron

Sequence Machine		Operation	Tools or Gauges	Cycle	Time	Remarks
				Setup Time	Operation Time	
05	- A	Check the size of castings	Vernier calipers			
10	Milling	Slab-mill the faces of straps	Slab mill cutter			
15	Milling	Spot facing to provide seats for bolt heads	End mill cutter \$\phi\$ 40 mm			
20	Drilling	Drill holes of \$\phi\$ 16 mm	Drill \(\psi \) 16 mm	12.7		
25	Lathe	Fix the straps along with a 8 mm spacer in between onto a turning fixture.				
30	Lathe	Bore \$ 170	Boring tool		64, 56	
35	Lathe	Bore \(\phi \) 182 \times 24 grooves on the straps	Boring tool			
40	Drilling	Drill and tap M16 hole	Drill bit and tap			
45	Drilling	Drill two oil holes in straps	Drills \$\phi\$ 6 mm and \$\phi\$ 3 mm			
50	-	Inspect the finished component	Boring gauge and varnier caliper	e production		

- Q3)From the Given assemble drawing answer the following
 - a) Give the fits for the following.
 - i)Nut and Screw
 - ii)Tommy bar and Screw
 - iii)Body and Nut
 - b)Draw the following components drawings and give necessary dimensional and geometric tolerances, surface roughness values,
 - i)Body
 - ii)CUP
 - iii)Screw
 - iv)Tommy Bar
 - c) Give the process sheet for the Screw and for the tommy bar.

From the screw jack shown in Figure. 1

Process Sheet for Tommy Bar

Part Name : Tommy Bar

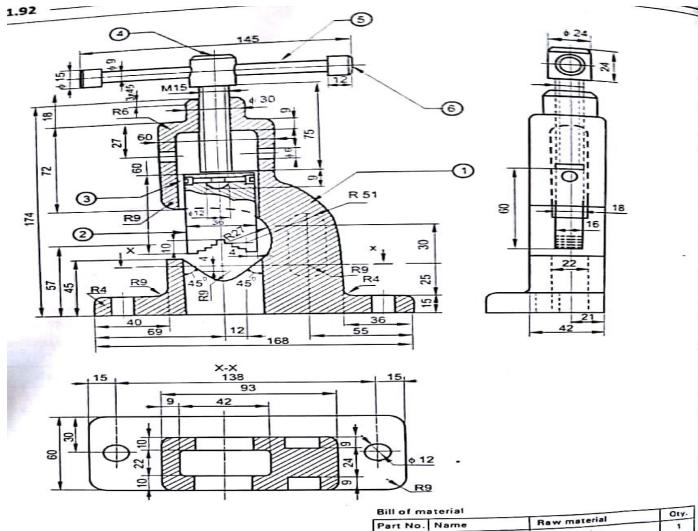
Part Number : 4
Cycle Time :

Material : Mild Steel

Sequence Machine		achine Operation	Tools or Gauges	Cycle Time		Remarks
			Setup Time	Operation Time		
05		Check the stock size	Vernier calipers			
10	Lathe	Clamp the work on chuck and perform facing at end	Facing tool			
15	Lathe	Turn the work to φ 20 mm	Turning tool			Tool changing needed
20	Lathe	Turn the section \$\phi\$ 16 \times 60 mm	Turning tool			
25	Lathe	Reverse the component and perform facing at other end	Facing tool	e are estate	in the second	Tool changing needed
30	Lathe	Knurling the bar	Knurling tool	1. 1.204		Tool changing needed
35		Inspect the finished	Vernier calipers,		est. Less services	
	distribution of the second	component	etc.			

Process Sheet for Screw

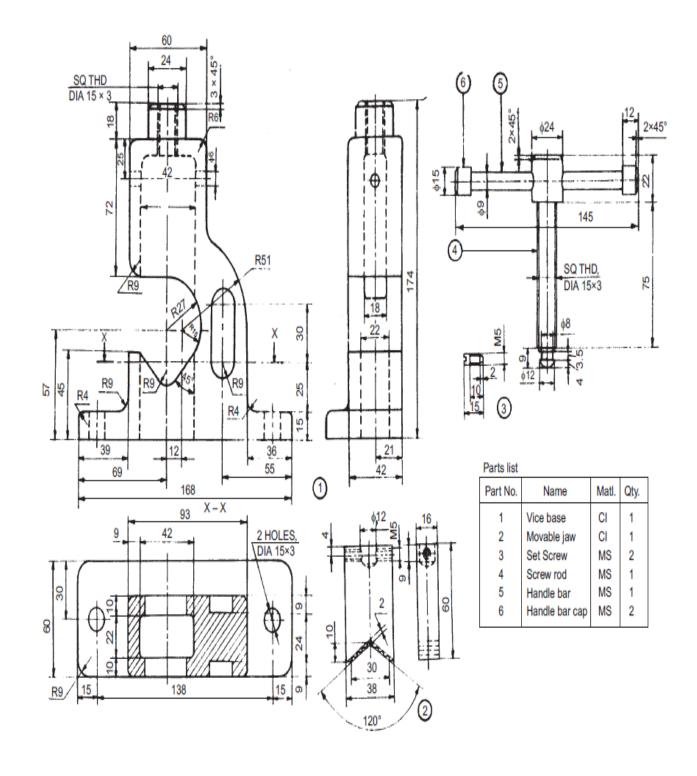
Part Name : Screw
Part Number : 2


Cycle Time :

Material : Medium Carbon Steel

Sequence	Machine	Operation	Tools or Gauges	Cycle	Time	Remarks
				Setup Time	Operation Time	
05	_	Check the size of raw stock	Vernier calipers			
10	Lathe	Clamp the work on chuck and perform facing at the end.	Facing tool			
15	Lathe	Drill centre holes and mount the work between centres	Centre drill			
20	Lathe	Turn the sections \$\phi36\$ mm, \$\phi60\$ mm and \$\phi25\$ mm	Turning tool			
25	Lathe	Produce three grooves	Parting tool			
30	Lathe	Chamfer the specified sections	Chamfering tool			
35	Lathe	Cutting square threads	Threading tool	35.0		
40	Lathe	Parting off the specified section	Parting tool			
45	Drilling	Drill cross holes of size \$\phi\$16 mm	Drill bit		7 A	
50	Furnace	Hardening the surface of work	-		047	ing sign frees
55	-	Check the finished component	Vernier calipers and other suitable			
19 Stud	41. 5		measuring instruments			

Q4) From the assembly drawing of pipe vice as shown in below figure. Answer the following


- a) Give the fits for the following
 - i)Housing and Handle Screw
 - ii) Handle bar and Handle bar cap
- b) Draw the following components drawings and give necessary dimensional and geometrical tolerances, surface roughness values and surface treatments.
 - i)Handle Screw ii)Handle bar iii)Handle bar cap
 - iv)Movable Jaw v)set screw
- c) Give the process sheet for the Handle bar.

		1-1
art No.	Name	Raw material
-	Mine body	C.I - Casting

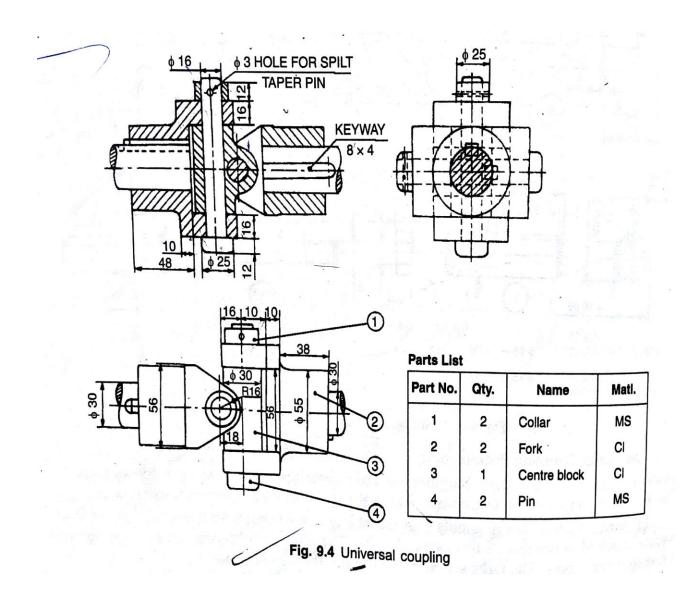
1.	Vice body	C.I - Casting	1
2.	Movable jaw	C.I - Casting	2
3.	Set-screw	MS - Std. Component	1
4.	Screw	MS - \$25 Bar stock	1
5.	Handle bar	MS - \$12 Bar slock	2
6.	Handle bar cap	MS - \$16 Bar stock	

Fig. 11.30 (a) Pipe Vice

PROCESS SHEET FOR HANDLE BAR

PART NO: 5

PART NAME : HANDLE BAR


QUANTITY :1 CYCLE TIME :

MATERIAL : MILD STEEL

Sequence	Machine	Operation	Tools &	Cycle	Time	Remarks
			Gauges	Setup Time	Operation	
				(min)	Time(min)	
05	-	Check the length and diameter of the raw material	Vernier Calipers	-	2	
10	Lathe	Turning	Turning tool	2	3	
15	Lathe	Facing on both ends	Facing tool	2	4	
20	Lathe	External threading on both ends to a distance of 12mm	External Threading tool	2	6	
25	-	Inspection	Vernier Calipers	-	1	

Q5). Study the given assembly drawing of the Universal Coupling as shown in below figure.

- a) Draw the component drawings.
- b) Apply suitable tolerances and fits.
- c) Apply suitable geometrical tolerances to components.
- d) Show the surface roughness symbols.
- e) Prepare the process sheet for FORK.

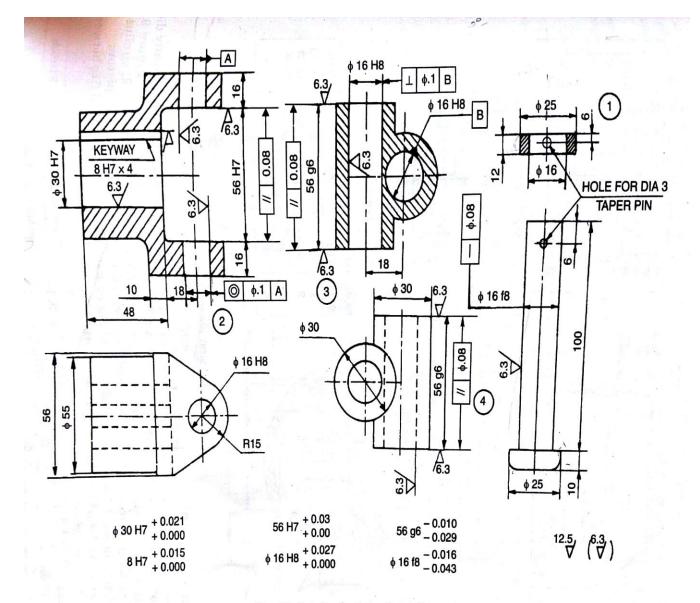
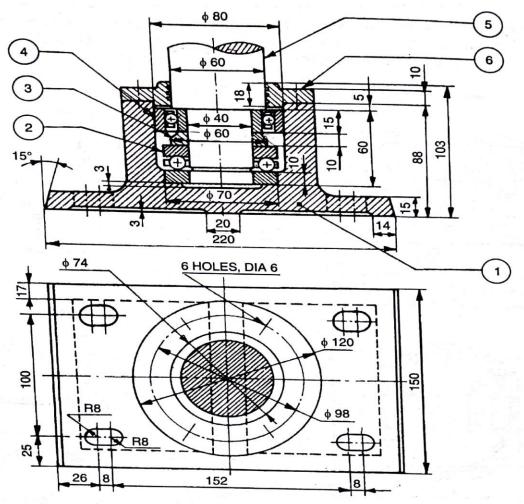


Fig. 9.5 Details of universal coupling

Part Name : Fork


Part Number: 1

Cycle Time :

Material : Mild Steel

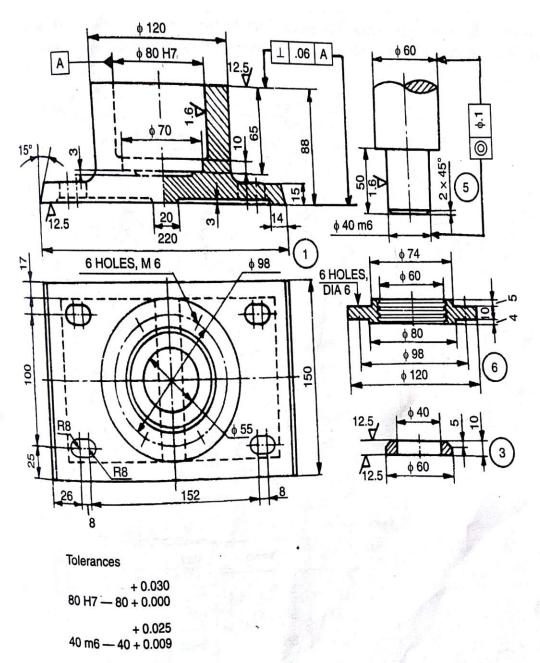
Sequence	Machine	Operation	Tools or Gauges	Cyc	le Time	Remarks
				Setup Time	Operation Time	
05		Check the material size	Vernier calipers		37	
10	Lathe	Clamp the work on chuck and perform facing at end.				
15	Lathe	Turn the work to a size of φ 56 × 38 mm	Turning tool	7.0		Tool changing needed
20	Drilling machine	Clamp the work on drill jig and drill a hole of \$\phi\$ 30 mm throughout	Drill bit			
25	Drilling machine	Reaming the drilled hole	Reamer		V, 1	Tool changing needed
30	Drilling- machine	Clamp the work on drill jig and drill a hole of $\phi 16 \times 88 \text{ mm}$	Drill bit			Tool changing needed
35	Drilling machine	Reaming \$\phi\$ 16 hole	Reamer			Tool changing needed
40	Slotting machine	Cut the key way	Slotting tool			
45	Grinding machine	Grinding the end portion i.e., 56 × 34 mm				
50		Inspect the finished component	Vernier calipers and other gauges	Sec.		

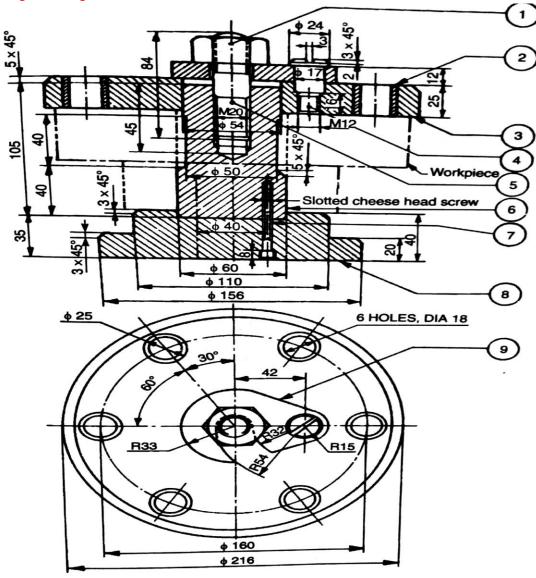
- Q6). Study the given assembly drawing of the Foot step bearing as shown in below figure.
 - a) Draw the component drawings.
 - b) Apply suitable tolerances and fits.
 - c) Apply suitable geometrical tolerances to components.
 - d) Show the surface roughness symbols.
 - e) Prepare the process sheet for COVER.

Parts List

Part No.	Qty.	Name	Matl.
1	1	Base	CI
2	1	Thrust bearing	
3	1	Spacer -	CI
4	1	Ball bearing	
5	1	Shaft	MS
6	1	Cover	CI

Fig. 9.8 Footstep bearing

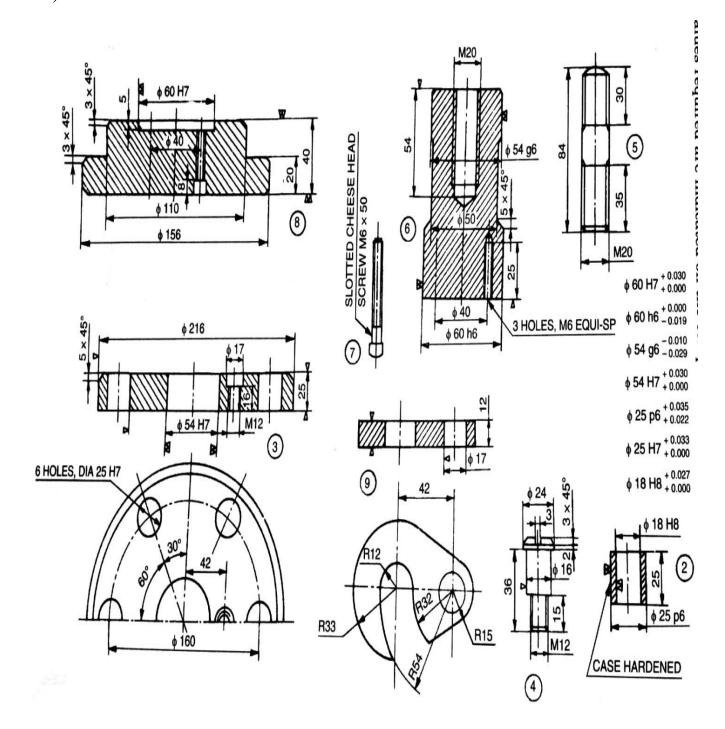



Fig. 9.9 Details of footstep bearing

Com-

Part Name : Cover Part Number: 6

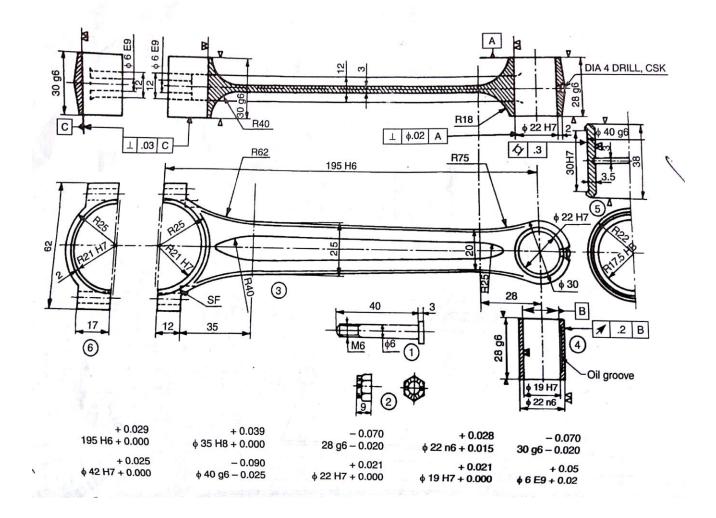
Mater	Machine		Tools or Gauges	Cyc	le Time	Remarks
Sequence	Machine	Operation		Setup Time	Operation Time	
05	-	Check the size of raw material	Vernier calipers		.86	
10	Lathe	Clamp the component on chuck and perform step turning of ϕ 80 × 4 mm along with facing	Turning tool and Facing tool			
15	Lathe	Facing \(\phi \) 120 mm side	Facing tool			
20	Lathe	Reverse the component and perform step turning of ϕ 74 × 5 mm along with facing on other side.	Turning tool and Facing tool			
25	Lathe	Boring \$\phi\$ 60 mm hole and producing serrations.	Boring tool			
30	Drilling machine	Clamp the component on drill jig and drill 6 holes of \(\phi \) 6 mm	Drill bit			
35		Check the size of finished component	Vernier calipers			


- Q7). Draw the part drawings for the given assembly of Drill JIG and suggest the fits between mating parts.
 - A) Stem and Jig Plate B) Jig Plate and Bush C) Stem and Base Plate.
 - B) Prepare the process sheet for JIG PLATE.

Don't Ma			Mati.
Part No.	Qty.	Name	Mati.
1	1	Nut	_
2	6	Bush	MCS
3	1	Jig plate	CI
4	1	Screw	MS
5	1	Stud	MS

Part No.	Qty.	Name	Mati.
6	1	Stem	MS
7	3	Screw	MS
8	1	Base	CI
9	1	Latch washer	MS

-. 44 49 Dell lie (Diete type)



Sequence	Machine	hine Operation	Tools or Gauges	Cyc	le Time	Remarks
			*	Setup Time	Operation Time	- N
05	-	Check the material size	Vernier calipers		1	1
10	Lathe	Clamp the work on chuck and perform facing at ends of stock ϕ 28 × 200 mm	Facing tool	3	2	
15	Lathe	Turn the component to \$\phi\$ 25 mm	Turning tool			Tool changing needed
20	Lathe	Parting off 6 pieces of 25 mm length from stock	Parting tool			Tool changing needed
25	Drilling machine	Drill hole of \$\phi\$ 18 mm	Drill bit		, ,	
30	Drilling machine	Reaming the hole	Reamer	٠		
35	-	Inspect the finished component	Vernier calipers, etc.	*		

- Q8). From the Assembly drawing of petrol engine connecting rod as shown in below figure. Answer the following:
 - a) Give the fits for the followingi)connecting rod and small end bushii)Bearing brasses and connecting rod.
 - b) Draw the following component drawings and give necessary dimensional and geometric tolerances, surface roughness values and surface treatments.

 i)connecting rod ii)Big end cap iii)Bearing brasses
 iv)Small end bush v)Big end bolts
 - c) Give the process sheet for the component bearing bush.

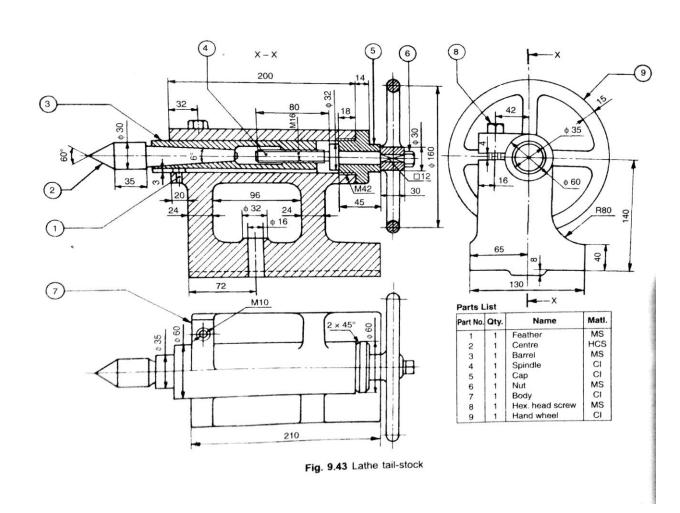
Part Name : Bearing Bush

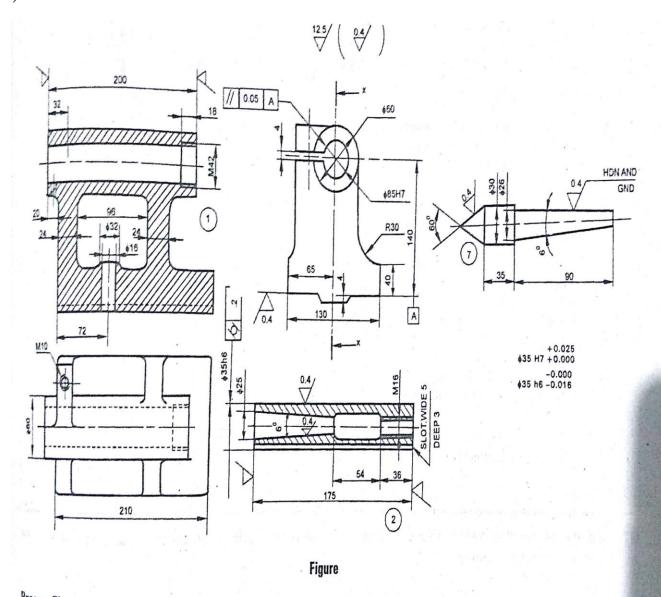
Part Number: 4

Cycle Time :

Material : Phosphor Bronze

Sequence	Machine	Section Operation	Tools or Gauges	Cycle Time		Remarks
				Setup Time	Operation Time	•
05		Check the material size	Vernier calipers			
10	Lathe	Clamp the work on chuck and perform facing at end.	Facing tool		1 /-	
. 15	Lathe	Turn the work to ϕ 22 × 29 mm	Turning tool			Tool changing needed
20	Lathe	Facing at other end	Facing tool			Tool changing needed
25	Drilling machine	Clamp the work on drill jig and drill a hole \$\phi 4 \text{ mm}\$	Drill bit			
30	Drilling machine	Drill a hole of \$\phi\$ 18 mm	Drill bit			Tool changing needed
35	Drilling machine	Reaming drilled hole of ϕ 18 mm to ϕ 19 mm	Reamer	A.		Tool changing needed
40	-	Inspect the finished component	Vernier calipers, etc.			


Q9). From the Assembly drawing of Tail Stock answer the following

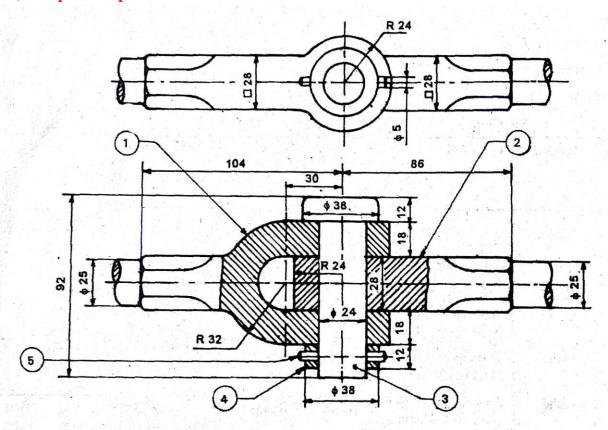

A)Give the fits for the following:

- i)Barrel and spindle
- ii)Hand Wheel and key
- iii)Body and Barrel

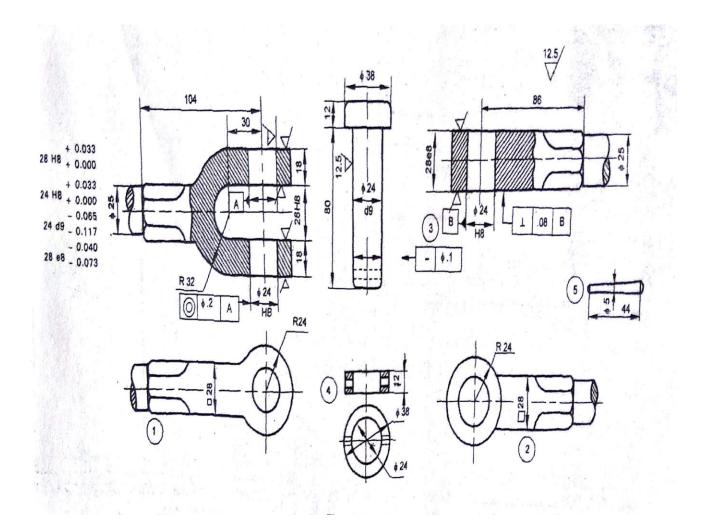
B)Draw the following components drawings and give necessary dimensional and geometic tolerances, surface roughness values.

- i)Body ii)Spindle Bearing
- iii)Hand Wheel iv)Centre
- C) Give the process sheet for the Barrel.

part Name : Barrel


Part Number : 2

Cycle Time :

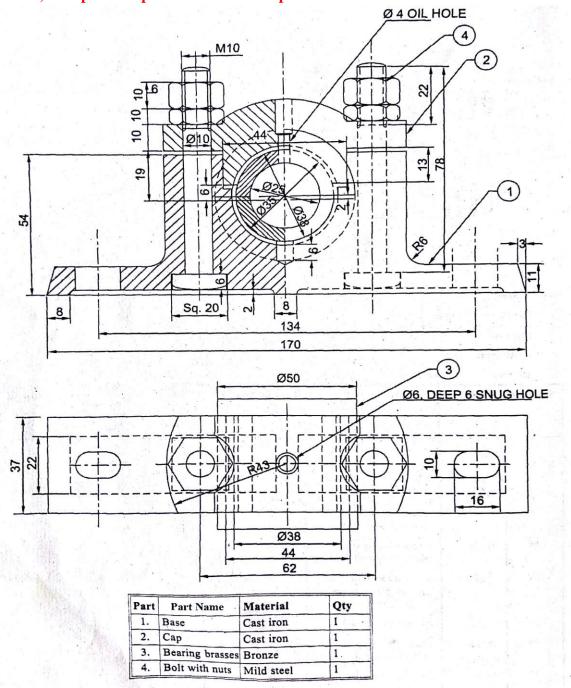

Sequence	Machine	10	peration	Tools or Gauges	Cycle	Time	Remarks	
	A AND THE REST		Setup Time	Operation Time				
						War and		
05). 		neck the size of mponent	Vernier calipers	100 A			
10	Lathe	Cl	amp the component on uck and perform facing	Facing tool				
15	Lathe	Ce	entre drilling	Centre drill bit				
20	Lathe	bet	ount the component tween centres and	Turning tool	158 #			
		ф3	n the component to 5 mm and upto the nplete length.		1			
25	Lathe		amp the component on	Drill bit				
	48	the	chuck and drill hole to the complete length	Dim ox			Marie Control	
30	Lathe		Boring the inner cavity of recess.	Boring tool				
35	Lathe		Threading M16	Threading tool or tap			. u	
40	Lathe		Reverse the component and perform facing at other end.	Facing tool		12 4		
45	Lathe		Boring the tapered hollo portion or morse taper	w Boring bar				
50	Centrele grinder	ess	Grinding the outer surface	-				
55	Milling		Slot cutting	Slitting saw type cutter				
60	Cylindri grinder		Grinding the tapered hollow portion	7				
65			Check the size of finishe component	d Vernier calipers and other suitable measuring	ε	100		

Q10).Study the given assembly drawing of the knuckle joint as shown in below figure.

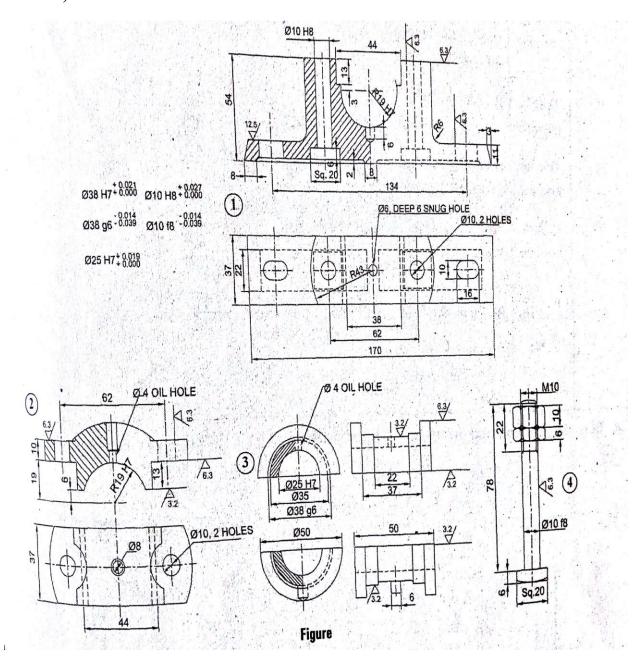
- a) Draw the component drawings.
- b) Apply suitable tolerances and fits.
- c) Apply suitable geometrical tolerances to components.
- d) Show the surface roughness symbols.
- e) Prepare the process sheet for PIN.

	Part No.	Name	Material	'Qty.
	1.	Fork end	FS - Forging	1
	2.	Eye end	FS - Forging	1
	3.	Pin	MS - \$40×95	1
-	4.	Collar	MS - 440 Bar stock	1
	5.	Taper pin ·	MS - Std. component	1

Part Name : Pin
Part Number : 3


Cycle Time :

Material : Mild Steel


Sequence	e Machine	Operation	Tools or Gauges	Cycle Time		Remarks
				Setup Time	Operation Time	
05		Check the size of component	Vernier calipers			
10	Lathe	Clamp the component on chuck and perform facing at the end	Facing tool			
15	Lathe	Turning \(\phi\) 24 mm upto a length of 80 mm	Turning tool •			
20	Lathe	Reverse the component and turn \(\phi\) 38 mm upto a length of 12 mm	Turning tool			
25	Lathe	Facing at other end	Facing tool	7.05		
30	Drilling machine	Clamp the component on drill jig and drill a hole	Drill bit of \$\phi\$ 4 mm	- A-		42 %
35	Drilling machine	Taper reaming of hole to \$\phi\$ 5 mm	Reamer			
40		Check the size of finished component	Vernier calipers	F		

Q11). Study the given assembly drawing of the Plummer Block as shown in below figure.

- a) Draw the component drawings.
- b) Apply suitable tolerances and fits.
- c) Apply suitable geometrical tolerances to components.
- d) Show the surface roughness symbols.
- e) Prepare the process sheet for Cap.

11 ANS)

Part Name : Cap

Part Number: 2

Cycle Time :

Material : Cast Iron

Drilling

machine

Drilling

machine

Jig boring

machine

Drill an oil hole of

Counter boring the oil hole

Boring the R19 mm section

to \$ 8 mm upto a length

Inspect the finished

φ 4 mm at centre

of 13 mm

component

35

40

45

50

equence	Machine	Operation	Tools or Gauges	Cycle Time		Remarks
18 1				Setup Time	Operation Time	
				1. 1787-1711	100 Marie	
05	7 1	Check the casting size	Vernier calipers		, 100	
10	Milling	Clamp the work on milling machine and perform facing on both the upper sides of work	Face milling cutter			
22.00		i.e., 37 × 21 mm sections				
15	Milling	Facing on bottom sides of work i.e., 13 × 21 mm sections	Face milling cutter			
20	Milling	Facing the sides of work to 37 mm	Slab milling cutter	d ()		Tool changing needed
25	Drilli	1 On the	l jig Drill bit			
		ф 10 mm				
30	Drilli		Reamer			Tool changing needed

Drill bit

Boring tool

Single point

cutting tool

Vernier calipers, etc

Tool changing

needed

Tool changing

needed